一个叫Lucas Kovar的哥们儿火了。他2001年7月发表在研究年报上的一篇名为Electron Band Structure In Germanium, My Ass的论文最近被大家翻出来,震惊了各路小伙伴。 在此之前,我还从没有看过如此“我手写我心”的学术文章。 (以下皆为其论文原文。前方高能预警。) Electron Band Structure In Germanium, My Ass 《锗中的电子能带结构,肏》
Abstract: The exponential dependence of resistivity on temperature in germanium is found to be a great big lie. My careful theoretical modeling and painstaking experimentation reveal 1) that my equipment is crap, as are all the available texts on the subject and 2) that this whole exercise was a complete waste of my time. 可怜的Lucas同学面对着手中破烂的设备发出了怒吼:这TM都是啥!到底TM能干啥! 简单来说,Lucas同学作为一个学物理的孩子,开始了一项悲催的实验:然后发现,锗的电阻对温度的指数依赖性是一个巨大的谎言,自己的理论模拟和实验表明:“我的设备是垃圾,所有写出的文字亦然,整个过程完全是在浪费时间。” (注:所谓电阻对温度的指数依赖性,意思是指随着温度增加,电阻呈指数增加) 愤恨之怒,力透纸背;焦躁之情,溢于言表。 你们抓紧感受下。
Introduction Electrons in germanium are confined to well-defined energy bands that are separated by "forbidden regions" of zero charge-carrier density. You can read about it yourself if you want to, although I don't recommend it. You'll have to wade through an obtuse, convoluted discussion about considering an arbitrary number of non-coupled harmonic-oscillator potentials and taking limits and so on. The upshot is that if you heat up a sample of germanium, electrons will jump from a non-conductive energy band to a conductive one, thereby creating a measurable change in resistivity. This relation between temperature and resistivity can be shown to be exponential in certain temperature regimes by waving your hands and chanting "to first order". Lucas同学继续写下去: 锗中的电子被禁闭于能带中,而能带是由零电荷密度的禁区所分隔开的。你必须费劲地进行对以下情况的讨论,在其中,你要考虑非成对简谐振子势的随机数并考虑边界等等。结果是,你如果加热一块锗样品,电子会从非导带跳跃至导带,然后电阻产生一个可测量的变化量。这种温度和电阻之间的关系在某些温度范围内呈指数式。 (注:在固体物理学中,固体的电子能带结构描述了禁止或允许电子所带有的能量,这是周期性晶格中的量子动力学电子波衍射引起的。单个自由原子的电子占据了原子轨道,形成一个分立的能级结构。如果几个原子集合成分子,他们的原子轨道发生类似于耦合振荡的分离。这会产生与原子数量成比例的分子轨道。 嗯我就知道这段话你们不会看的哼哼哼) 此时Lucas同学终于意识到自己在写论文而非小学生周记。 Experiment procedure I sifted through the box of germanium crystals and chose the one that appeared to be the least cracked. Then I soldered wires onto the crystal in the spots shown in figure 2b of Lab Handout 32. Do you have any idea how hard it is to solder wires to germanium? I'll tell you: real goddamn hard. The solder simply won't stick, and you can forget about getting any of the grad students in the solid state labs to help you out. Lucas同学发出了悲鸣:你们知道在锗上焊接电线有多难嘛?你们知道多难嘛!多难! 还谁都指望不上! 我看到这心都碎了,多想带上我的电工包,对着无助的小Lucas说上一句:焊接技术哪家强? Once the wires were in place, I attached them as appropriate to the second-rate equipment I scavenged from the back of the lab, none of which worked properly. I soon wised up and swiped replacements from the well-stocked research labs. This is how they treat undergrads around here: they give you broken tools and then don't understand why you don't get any results. Lucas同学开始吐槽学校的不靠谱了:“他们把一堆破铜烂铁般的实验用具甩给你,然后还疑惑你为啥没得到任何实验结果。” 什么,你以为他上的是职业技术学院?不,他在斯坦福。 不过貌似赫赫有名的斯坦福大学对待本科生的实验也不甚认真,这也难怪。帝国主义控制下的大学怎能让人获得真正的学术成就呢?毕竟不是我大皇家布鲁弗莱(Blue Fly)学院。 In order to control the temperature of the germanium, I attached the crystal to a copper rod, the upper end of which was attached to a heating coil and the lower end of which was dipped in a thermos of liquid nitrogen. Midway through the project, the thermos began leaking. That's right: I pay a cool ten grand a quarter to come here, and yet they can't spare the five bucks to ensure that I have a working thermos. Lucas同学开始做实验:加热锗。结果实验到一半,用来控制锗温度的保温瓶就漏了。 “他们甚至连五美元都不肯花,以确保我有一个能用的保温瓶。” Results Check this shit out (Fig. 1). That's bonafide, 100%-real data, my friends. I took it myself over the course of two weeks. And this was not a leisurely two weeks, either; I busted my ass day and night in order to provide you with nothing but the best data possible. Now, let's look a bit more closely at this data, remembering that it is absolutely first-rate. Do you see the exponential dependence? I sure don't. I see a bunch of crap. 看看这狗屎(图1)。 Christ, this was such a waste of my time. 此段直白的表达了小作者在科研过程中受客观条件限制而难以做出正确结果的愤怒,焦躁和失望之情。以至于使他怀疑人生,最终对法力无边的耶稣提出了呼唤。我们有理由相信他未来的神学之路会越走越远。 Banking on my hopes that whoever grades this will just look at the pictures, I drew an exponential through my noise. I believe the apparent legitimacy is enhanced by the fact that I used a complicated computer program to make the fit. I understand this is the same process by which the top quark was discovered. Locus想从这些噪声点中得出一个指数式:“我知道这和顶夸克被发现的过程一样艰难。” Locus自创了一个梗,自黑以及顺手黑了一下顶夸克——顶夸克(Top quark)是基本粒子之一,属于费米子中的第三代夸克,也是已知最重的粒子,质量达到171GeV(与锇原子相当),电荷为+2/3,寿命极短,在1E-24s内衰变成其他粒子。 (在做出顶夸克存在的预言之后,粲夸克、底夸克都相继被实验发现。人们知道顶夸克要重的多,因此需要更多的能量才能将其分离出来,只是没想到这一等就是18年。德国电子加速器以及斯坦福线性加速器都未能使顶夸克现身,欧洲原子能中心的超级质子同步加速器可以将质子加速至400GeV,但这仍然不足以产生出顶夸克。它们最初估计顶夸克的质量在41 GeV/c2以上,然而即使将加速器的能量开至极限还是不足以发现顶夸克,因此这一预估值被修改至77 GeV/c2以上。 我知道你们也不会看这段的哼!) Conclusion Going into physics was the biggest mistake of my life. I should've declared CS. I still wouldn't have any women, but at least I'd be rolling in cash. 结论:进入物理领域是我一生最大的错误。我本该学计算机的,尽管我仍会找不到妹子,但至少我会有钱。 …………………………这句我看的心头一软,真想立即奔赴美帝无偿当他妹子,抚慰他那忧郁的心灵。 ——————————我是漫长的分割线———————————————— 时光荏苒,岁月如梭。 Locus写这篇丧心病狂的论文的时候,还是2001年。后来他终于“改邪归正弃暗投明悬崖勒马”,转到了计算机系。然后。2004年,他拿到了计算机的Phd
他这篇论文火了以后,人们纷纷在论坛讨论他。我发现了这么一段回复: Ah, that takes me back. Oh how we laughed, we physics majors, and continued to put up with it. 12 years later I'm working as a programmer, and while I'm not rolling in cash, I'm sitting comfortably on it, and the worst day of programming is better than the best day of physics. 虽然我还是没能爽歪歪的在钱堆里打滚儿,可搞编程最烂的一天,也强于做物理最好的那天。 ………………………………………………………………………………………………………………………………………………竟无言以对。 Lucas是78年9月16号生的,你们看,处女座…… 然后他喜欢跆拳道柔道和,和跳舞(……) 最后附上Lucas小哥的照片 讲真,蛮帅。 小哥还在照片下写上这么一句: A typical image of me preparing to search out and combat the forces of evil. (请问你这么中二真的不需要被挖掘机挖一挖吗)
|